If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3d2 + 4d + -3 = 0 Reorder the terms: -3 + 4d + 3d2 = 0 Solving -3 + 4d + 3d2 = 0 Solving for variable 'd'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1 + 1.333333333d + d2 = 0 Move the constant term to the right: Add '1' to each side of the equation. -1 + 1.333333333d + 1 + d2 = 0 + 1 Reorder the terms: -1 + 1 + 1.333333333d + d2 = 0 + 1 Combine like terms: -1 + 1 = 0 0 + 1.333333333d + d2 = 0 + 1 1.333333333d + d2 = 0 + 1 Combine like terms: 0 + 1 = 1 1.333333333d + d2 = 1 The d term is 1.333333333d. Take half its coefficient (0.6666666665). Square it (0.4444444442) and add it to both sides. Add '0.4444444442' to each side of the equation. 1.333333333d + 0.4444444442 + d2 = 1 + 0.4444444442 Reorder the terms: 0.4444444442 + 1.333333333d + d2 = 1 + 0.4444444442 Combine like terms: 1 + 0.4444444442 = 1.4444444442 0.4444444442 + 1.333333333d + d2 = 1.4444444442 Factor a perfect square on the left side: (d + 0.6666666665)(d + 0.6666666665) = 1.4444444442 Calculate the square root of the right side: 1.201850425 Break this problem into two subproblems by setting (d + 0.6666666665) equal to 1.201850425 and -1.201850425.Subproblem 1
d + 0.6666666665 = 1.201850425 Simplifying d + 0.6666666665 = 1.201850425 Reorder the terms: 0.6666666665 + d = 1.201850425 Solving 0.6666666665 + d = 1.201850425 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + d = 1.201850425 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + d = 1.201850425 + -0.6666666665 d = 1.201850425 + -0.6666666665 Combine like terms: 1.201850425 + -0.6666666665 = 0.5351837585 d = 0.5351837585 Simplifying d = 0.5351837585Subproblem 2
d + 0.6666666665 = -1.201850425 Simplifying d + 0.6666666665 = -1.201850425 Reorder the terms: 0.6666666665 + d = -1.201850425 Solving 0.6666666665 + d = -1.201850425 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + d = -1.201850425 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + d = -1.201850425 + -0.6666666665 d = -1.201850425 + -0.6666666665 Combine like terms: -1.201850425 + -0.6666666665 = -1.8685170915 d = -1.8685170915 Simplifying d = -1.8685170915Solution
The solution to the problem is based on the solutions from the subproblems. d = {0.5351837585, -1.8685170915}
| 2x+5=9x-0.111 | | 35(5)+.10m=25(5)+.25m | | x^2+6x+90=8 | | x^2+20x-73=0 | | (x-4)(x(1+i))(x(1-i))=0 | | 35x=180 | | 4(3x-8)-1=12x-33 | | 4w^2-8=5w | | x^2-15+50=0 | | 80r^2-45= | | 9-15=a-3 | | 12+4x=2y+5 | | 3x^2+12x-96=0 | | 50k-(20k+16k)*.10= | | 12+2y=4x+5 | | x^3+6x^2-36x=0 | | -4x+8=-2(3x+4) | | -2m^2+3m=1 | | N+17=9 | | 50k-(20k-16k)(1-0.10)= | | x^3+6x^2-96x=0 | | 2n+4n=6 | | 45x=17+6x | | 50k-(20k+16k)= | | -21+70x=77 | | 15x^2-35x+10=0 | | b=90 | | 1+5x^2+x^4= | | 28+24x=36 | | 50k-(20k-16k)= | | 50=w(w-5) | | x+9y=-6 |